
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL TECHNICAL UNIVERSITY OF UKRAINE

«Igor Sikorsky Kyiv Polytechnic Institute»

Electric Power Engineering, Electrical Engineering and Electromechanics

EDUCATIONAL AND SCIENTIFIC PROGRAM

of the third (educational and scientific) degree of the higher education

in the specialty 141 "Electric Power Engineering, Electrical Engineering and Electromechanics"

of the field of knowledge 14 "Electrical Engineering"

educational qualification: PhD in electric power engineering, electrical engineering and electromechanics

Enacted by the decree of the Igor Sikorsky KPI Rector decree #1/282 of «17» 09 2020.

PREAMBLE

DEVELOPED by the project team:

Project team leader:

Oleksandr Stanislavovych YANDULSKY – doctor of technical science, professor, dean of the Faculty of Electrical Power Engineering and Automatics

Members of the project team:

Volodymyr Andriyovych BAZHENOV – senior lecturer of the Department of electrical networks and systems of the Faculty of Electrical Power Engineering and Automatics, candidate of technical science (PhD), associate professor.

Serghiy Oleksandrovych BURYAN– senior lecturer of the Department of automation of electromechanical systems and electrical drives of the Faculty of Electrical Power Engineering and Automatics, candidate of technical science (PhD), associate professor.

Yevgheniy Oleksandrovych TROTSENKO – senior lecturer of the Department of theoretical electrical engineering of the Faculty of Electrical Power Engineering and Automatics, candidate of technical science (Ph.D), associate professor.

Serghiy Petrovych DENYSIUK – director of the Institute of Energy Saving and Energy Management, doctor of technical science, professor.

Heads of the Departments:

Valeriy Valentynovych KYRYK – head of the Department of electrical networks and systems of the Faculty of Electrical Power Engineering and Automatics, doctor of technical science, professor.

Stepan Oleksandrovych KUDRIA – acting head of the Department of renewable energy sources of the Faculty of Electrical Power Engineering and Automatics, doctor of technical science, professor.

Mykola Yakovych OSTROVERKHOV– head of the Department of theoretical electrical engineering of the Faculty of Electrical Power Engineering and Automatics, doctor of technical science, professor.

Serghiy Mykolayovych PERESADA – head of the Department of automation of electromechanical systems and electrical drives of the Faculty of Electrical Power Engineering and Automatics, doctor of technical science, professor.

Volodymyr Andriyovych POPOV – head of the Department of power supply of the Institute of Energy Saving and Energy Management, doctor of technical science, associate professor.

Viktor Petrovych ROZEN – head of the Department of automation of electrotechnical complexes operation of the Institute of Energy Saving and Energy Management, doctor of technical science, professor.

Olgha Ivanivna TOLOCHKO – acting head of the Department of power systems automation of the Faculty of Electrical Power Engineering and Automatics, doctor of technical science, professor.

Stepan Prokopovych SHEVCHUK— head of the Department of electromechanical equipment of energy-intensive industries of the Institute of Energy Saving and Energy Management, doctor of technical science, professor.

Vasyl Fedorovych SHYNKARENKO- head of the Department of electromechanics of the Faculty of Electrical Power Engineering and Automatics, doctor of technical science, professor.

APPROVED:

Scientific and methodical commission of the Igor Sikorsky KPI of the specialty 141 "Electric Power Engineering, Electrical Engineering and Electromechanics"

Head of the commission of «19 Oleksandr YANDULSKY (meeting protocol # 3 of «19 06 2020.)

Methodical council of the Igor Sikorsky KPI

Head of the council Yuriy YAKYMENKO (meeting protocol # 1 of « 03 » 09 2020.)

TAKEN INTO ACCOUNT:

- the project of the standard for higher education of the specialty 141"Electric Power Engineering, Electrical Engineering and Electromechanics" in educational qualification PhD;
- results of the external approbation of the program;
- proposals of stakeholders and recommendations of professional associations.

CONTENTS

1. PROFILE OF THE EDUCATIONAL PROGRAM	5
2. LIST OF COMPONENTS OF THE EDUCATIONAL COMPONENT OF THE EDUCATIONAL AND SCIENTIFIC PROGRAM	<u>9</u>
3. STRUCTURAL AND LOGICAL SCHEME OF THE EDUCATIONAL PROGRAM	11
4. Scientific component	12
5. FORM OF GRADUATE CERTIFICATION OF HIGHER EDUCATION APPLICANTS	13
6. MATRIX OF CONFORMITY OF SOFTWARE COMPETENCIES TO THE COMPONENTS OF THE EDUCATIONAL PROGRAM	13
7. MATRIX OF PROVIDING SOFTWARE LEARNING RESULTS BY RELEVANT COMPONENTS OF THE EDUCATIONAL PROGRAM	14

1. PROFILE OF THE EDUCATIONAL PROGRAM

of the specialty 141 "Electric Power Engineering, Electrical Engineering and Electromechanics"

1 -	- General information				
Full name of ZVO and institute /	National Technical University of Ukraine «Igor Sikorsky				
faculty	Kyiv Polytechnic Institute», Faculty of Electrical Power				
•	Engineering and Automatics				
Higher education degree and title of	Degree – Ph.D				
qualification in the original language	Qualification – Ph.D in Power Engineering, Electrical				
	Engineering and Electromechanics				
The official name of the program	Electric Power Engineering, Electrical Engineering and				
	Electromechanics				
Type of diploma and scope of the	Doctor of Philosophy, single, 40 credits of EKTC				
program	educational component, 200 credits of scientific				
	component, term of study 4 years				
	The scientific component involves conducting your own				
	research and design of its results in the form of a				
	dissertation.				
Availability of accreditation	Accredited for the first time				
Cycle / level of VO	NRC of Ukraine - level 8; FQ-EHEA - the third cycle,				
	EQF-LLL - level 8				
Prerequisites	The presence of a master's degree, specialist's				
Language (s) of instruction	Ukrainian, English				
Validity of the the program	Until the next accreditation				
Internet address of the permanent	https://fea.kpi.ua/temp/onp_PhD_141_29_10_2020.pdf				
placement of the educational	osvita.kpi.ua				
program					
? The nurness of the educational program					

2 – The purpose of the educational program

Training of highly qualified, competitive, integrated into the European and world scientific and educational space professionals capable of independent research, scientific and organizational, pedagogical and organizational and practical activities in the field of electricity, electrical engineering and electromechanics, teaching in higher education.

The purpose of the educational program corresponds to the development strategy of KPI. Igor Sikorsky for 2020-2025 on the formation of the society of the future on the basis of the concept of sustainable development.

of sustamable development.						
3 – Characte	ristics of the educational program					
Subject area	Field of knowledge: 14 "Electrical Engineering"					
	Specialty: 141 "Electric power, electrical engineering and					
	electromechanics"					
	Object of activity: processes of production, transmission,					
	distribution and consumption of electric energy at power					
	plants, in electric networks and systems; processes of					
	conversion of electric energy in electromechanical					
	systems; safety analysis, increase of reliability and					
	increase of service life of electric power, electrotechnical					
	and electromechanical equipment; means of information					
	and measuring equipment; methods of measurement,					
	control, testing and diagnosis; regulatory documentation					
	related to the processes of production, transmission,					

	distribution and consumption of electricity; information
	technologies of experimental researches.
	Objective of training: training of specialists in the field of
	electrical engineering, which involves the formation and
	development of general and professional competencies in
	power engineering, electrical engineering and
	electromechanics, which provide the ability to solve
	complex problems in professional and / or research and
	innovation, involving deep rethinking and the creation of
	new holistic knowledge and / or professional practice.
	Theoretical content of the subject area: concepts and
	principles and concepts of fundamental knowledge of the
	theory of electrical engineering, modeling and the
	programtimization of electrical, electrical and
	electromechanical systems and complexes, their use for
	innovation and research of power plants, networks and
	systems, electric machines and electric drives; the
	programtimal ways to automate experimental research in
	order to obtain reliable information about the objects of
	study; principles of professional activity aimed at
	improving the reliability and energy efficiency of systems
	and complexes.
	Methods, techniques and technologies: methods and
	means of conducting research of processes in electric
	power and electromechanical systems and complexes;
	automated design, engineering and production control;
	teaching and training; team management in solving
	problems in power engineering, electrical engineering
	and electromechanics; creation and research of
	information technologies, software of measuring
	instruments and software for processing of measurement
	results.
	Tools and equipment: software and hardware, devices,
	systems, technologies of design, control, monitoring,
	modeling, creation, research and the programmeration of
	electric power, electrotechnical and electromechanical equipment.
Orientation the program	Educational and scientific
The main focus of the the program	Special education in the field of power engineering,
The main rocus of the the program	electrical engineering and electromechanics. The
	program is based on well-known scientific provisions,
	taking into account the current state of development of
	the power industry, focuses on current areas in which
	further professional and scientific careers are possible.
	Keywords: electricity, electric power, electrical
	engineering, electromechanics, energy saving, energy
	management, automation
Features of the program	Higher education in electrical engineering, electrical
1 0	engineering and electromechanics, which is a field of
	technology that includes a set of tools, methods and
	techniques of human activity designed to use electricity,
	control its flows and conversion of electricity into other

	anaray and vice yeree					
	energy and vice versa. Mastering additional fundamental and specialized					
	disciplines, which together provides the acquisition of the					
	necessary competencies for further scientific and / or					
	professional activities.					
	Aimed at forming the applicant's ability to identify and					
	solve scientific problems and complex practical problems					
	in the field of knowledge 14 - "Electrical Engineering"					
	within the specialty 141 - "Electrical Power Engineering,					
	Electrical Engineering and Electromechanics".					
	The program gives applicants the opportunity to freely					
	choose academic disciplines.					
	The high level of the research part of the training is					
	provided by scientific schools of the specialty, the					
	presence of research centers and laboratories, cooperatio					
	agreements with leading industrial and scientific					
	institutions.					
	The implementation of the program involves mandatory					
	pedagogical practice.					
	A semester of academic mobility is possible within the					
	framework of research on the topic of dissertations.					
1 - Suitability of grad	Implemented in English for foreign graduate students. duates for employment and further study					
Suitability for employment	Graduates are able to hold positions whose qualification					
Structure of employment	requirements include a doctorate:					
	- research and teaching work in higher education					
	institutions;					
	- research work in research institutions.					
	Graduates can be employed in positions (according to the					
	current Classifier of Professions of Ukraine DK 003:					
	2010):					
	2143.1 Researchers (electrical engineering):					
	2143.1 Research Engineer in Agricultural Energy					
	2143.1 Junior researcher (electrical engineering)					
	2143.1 Researcher (electrical engineering)					
	2143.1 Researcher-consultant (electrical engineering)					
	2310.1 Professors and associate professors: 2310.1 Doctoral student					
	2310.1 Associate professor					
	2310.1 Professor of the Department					
	2310.2 Other teachers of universities and higher					
	educational establishments:					
	2310.2 Assistant					
	2310.2 Teacher of a higher educational institution					
Further training	Continuing education in doctoral studies and / or					
	participation in postdoctoral programs					
	Feaching and assessment					
Teaching and learning	Lectures, practical and seminar classes, computer					
	workshops and laboratory works; technology of blended					
	learning, practice; execution of the dissertation					
Evaluation	Rating system, assessment, oral and written exams, testing					

6 – Program competencies					
Integral competence	Ability to solve complex problems during professional				
	and / or research and innovation activities in the field of				
	power engineering, electrical engineering and				
	electromechanics, which involves a deep rethinking of				
	existing and the creation of new holistic knowledge and /				
	or professional practice.				
General competencies (ZK)	K01. Ability to abstract thinking, analysis and synthesis.				
	K02. Ability to search, process and analyze information				
	from various sources.				
	K03. Ability to work in an international context.				
Professional special competencies	K04. Ability to perform original research, achieve				
(SC)	scientific results that create new knowledge in electrical				
	engineering and related interdisciplinary areas and can be				
	published in leading scientific journals in electrical				
	engineering and related fields.				
	K05. Ability to orally and in writing present and discuss				
	the results of research and / or innovative developments				
	in Ukrainian and English, a deep understanding of				
	English scientific texts in the field of research.				
	K06. Ability to solve problems of increasing the				
	reliability and efficiency of electric, electrical and				
	electromechanical facilities and systems due to the need				
	to ensure sustainable development.				
	K07. Ability to use modern information technologies,				
	databases and other electronic resources, specialized				
	software in scientific and educational activities.				
	K08. Ability to identify, pose and solve research				
	problems in the field of electrical engineering, evaluate				
	and ensure the quality of research.				
	K09. Ability to initiate, develop and implement				
	comprehensive innovative projects in the field of electrical engineering and related interdisciplinary				
	projects, leadership in their implementation.				
	K10. Ability to adhere to research ethics, as well as the				
	rules of academic integrity in research and scientific and				
	pedagogical activities.				
	pedagogicai activities.				

7 – Program learning outcomes

RN01. Have advanced conceptual and methodological knowledge in electrical engineering and at the subject line, as well as research skills sufficient to conduct scientific and applied research at the level of the latest world achievements in the field, gain new knowledge and / or innovate. RN02. Freely present and discuss with specialists and non-specialists the results of research, scientific and applied problems of electrical engineering in state and foreign languages, qualified to reflect the results of research in scientific publications in leading international scientific journals.

RN03. Develop and research conceptual, mathematical and computer models of processes and systems, effectively use them to gain new knowledge and / or create innovative products in electrical engineering and related interdisciplinary areas.

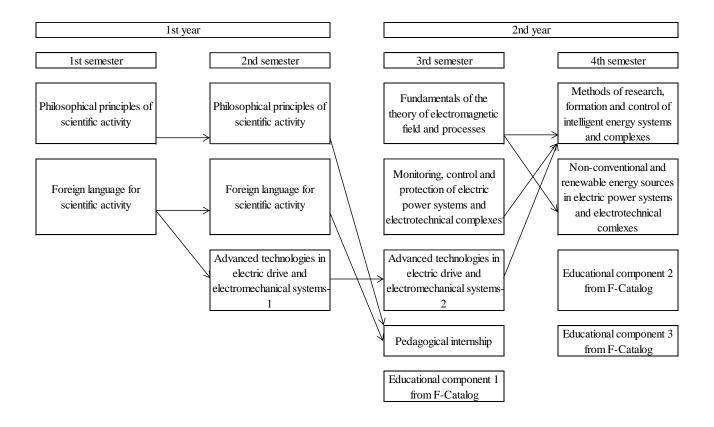
RN04. Plan and perform experimental and / or theoretical research in electrical engineering and related interdisciplinary areas using modern tools, critically analyze the results of their own research and the results of other researchers in the context of the whole set of modern knowledge about the problem.

RN05. Deeply understand the general principles and methods of technical sciences, as well as the methodology of scientific research, apply them in their own research in the field of electrical engineering and in teaching practice.

RN06. Be able to organize joint work with specialists from different fields in the framework of research projects in power engineering, electrical engineering and electromechanics. RN07. Be able to formulate the basic psychological and pedagogical principles and teach professionally-oriented disciplines in electrical engineering, electrical engineering and electromechanics.

RN08. Be able to develop a feasibility study of projects in electricity, electrical engineering and electromechanics and assess the economic efficiency of their implementation.

RN09. Know the advanced technologies of renewable energy based on the accumulated world experience taking into account the current technical condition of equipment and facilities, promising methods of energy storage of renewable sources, economic requirements, quality requirements, reliability and environmental friendliness of electricity production.


8 – Resource support for program implementation					
Staffing	In accordance with the personnel requirements for				
	ensuring the implementation of educational activities for				
	the relevant level of HE, approved by the Resolution of				
	the Cabinet of Ministers of Ukraine dated 30.12.2015				
	№1187 (current) in the wording dated 23.05.2018 №347.				
Logistics	In accordance with the technological requirements for				
	material and technical support of educational activities of				
	the relevant level of HE (Annex 4 to the License				
	Conditions), approved by the Resolution of the Cabinet				
	of Ministers of Ukraine dated 30.12.2015 № 1187.				
	Use of equipment for lectures in the format of				
	presentations, network technologies, in particular on the				
	Sikorsky distance learning platform.				
Information and educational and	In accordance with the technological requirements for				
methodical support	educational and methodological and informational				
	support of educational activities of the relevant level of				
	HE (Annex 5 to the License Conditions), approved by the				
	Resolution of the Cabinet of Ministers of Ukraine dated				
	30.12.2015 № 1187 as amended in accordance with the				
	Resolution of the Cabinet of Ministers of Ukraine №347				
	10.05.2018				
	Use of the Scientific and Technical Library of KPI named				
	after Igor Sikorsky.				
9	- Academic mobility				
National credit mobility	Possibility of concluding agreements on academic				
	mobility, double graduation, etc.				
International credit mobility	It is possible to conclude agreements on international				
	academic mobility, double graduation, long-term				
	international projects that include inclusive postgraduate				
	training, etc. International projects:				
	Erasmus + project (KA1) with West Pomeranian				
	University of Technology in Szczecin, Poland				
	DAAD project with Hessen University of Applied				
	Sciences, University of Applied Sciences, Hesse, Germany				
	(Technische Hochschule Mittelhessen - University of				
	Applied Sciences)				
	Erasmus + project (KA1) with the University of				

	Lorraine, Minen Nancy High School, Nancy, France
	(Universite de Lorraine Ecole Nationale Superieur des
	Mines Nancy, ville Nancy, France)
	Erasmus + project (KA1) with the University of Le
	Mans, Le Mans, France
	Erasmus + project (KA1) with the University of Applied
	Sciences in Giessen, Germany (Technische Hochschule
	Mittelhessen)
Training of foreign applicants VO	Teaching in English

2. LIST OF COMPONENTS OF THE EDUCATIONAL COMPONENT OF THE EDUCATIONAL AND SCIENTIFIC PROGRAM

Code n/a	Components of the educational program (academic	ECTS	Form of final					
Code II/a	disciplines, practices, qualification work)	credits	control					
1	2	3	4					
	Normative components of the program							
ZO 1	Philosophical principles of scientific activity	6	Examination					
ZO 2	Foreign language for scientific activity	6	Examination					
ZO 3	Methods of research, formation and control of intelligent energy systems and complexes	3	Examination					
ZO 4	Fundamentals of the theory of electromagnetic field and processes	3	credit					
ZO 5	Non-conventional and renewable energy sources in electric power systems and electrotechnical comlexes		credit					
ZO 6	Monitoring, control and protection of electric power systems and electrotechnical complexes		Examination					
PO 1	Advanced technologies in electric drive and		Examination					
PO 2	Pedagogical internship	2	credit					
	Elective components of the program	ļ						
V 1	Educational component 1 from F-Catalog	3	credit					
V 2	Educational component 2 from F-Catalog	1 0						
V 3	Educational component 3 from F-Catalog	4 Examination						
	TAL of NORMATIVE educational components:		credits					
TO	TAL of ELECTIVE educational components:	10	credits					
	TOTAL OF THE PROGRAM: 40 credits							

3. STRUCTURAL AND LOGICAL SCHEME OF THE EDUCATIONAL PROGRAM

4. SCIENTIFIC COMPONENT

YEAR	The content of the graduate student's scientific work	Forms of control
1st year	Choice and substantiation of the topic of own scientific research, determination of the content, terms of performance and volume of scientific works; selection and substantiation of the methodology of conducting own research, review and analysis of existing views and approaches that have developed in modern science in the chosen field. Preparation and publication of at least 1 article (usually a review) in scientific professional publications (domestic or foreign) on the research topic; participation in scientific and practical conferences (seminars) with the publication of abstracts.	Approval of the individual plan of the postgraduate student's work at the academic council of the institute / faculty, reporting on the progress of the individual postgraduate student's plan twice a year
2nd year	Conducting own research under the guidance of the supervisor, which involves solving research problems through the use of a set of theoretical and empirical methods. Preparation and publication of at least 1 article in scientific professional publications (domestic or foreign) on the research topic; participation in scientific and practical conferences (seminars) with the publication of abstracts.	Reporting on the progress of the individual postgraduate student's plan twice a year
3rd year	Analysis and generalization of the obtained results of own scientific research; substantiation of scientific novelty of the obtained results, their theoretical and / or practical significance. Preparation and publication of at least the 1st article in scientific professional publications on the research topic; participation in scientific and practical conferences (seminars) with the publication of abstracts.	Reporting on the progress of the individual postgraduate student's plan twice a year
4th year	Registration of scientific achievements of the post-graduate student in the form of the dissertation, summing up concerning completeness of coverage of results of the dissertation in scientific articles according to the current requirements. Implementation of the obtained results and receipt of supporting documents. Submission of documents for preliminary examination of the dissertation. Preparation of a scientific report for final certification (defense of the dissertation).	Reporting on the progress of the individual postgraduate student's plan twice a year. Providing an the programinion on the scientific novelty, theoretical and practical significance of the dissertation results.

5. FORM OF GRADUATE CERTIFICATION OF HIGHER EDUCATION APPLICANTS

Graduation certification of applicants for higher education under the educational-scientific program "Electrical Power Engineering, Electrical Engineering and Electromechanics" specialty 141 "Electrical Power Engineering, Electrical Engineering and Electromechanics" is carried out in the form of dissertation defense and ends with the issuance of a standard document. electric power, electrical engineering and electromechanics.

Qualification work is checked for plagiarism and after the defense is placed in the repository of NTB University for free access. Graduation certification is carried out the programenly and publicly.

6. MATRIX OF CONFORMITY OF SOFTWARE COMPETENCIES TO THE COMPONENTS OF THE EDUCATIONAL PROGRAM

	ZO 1	ZO 2	203	ZO 4	ZO S	9 OZ	PO 1	PO 2	Scientific component
K 01	+							+	+
K 02	+							+	+
K 03		+						+	
K 01				+	+		+		
K 02		+					+		+
K 03				+	+	+			
K 04		+					+		
K 05			+				+		+
K 06			+		+	+			
K 07	+							+	+

7. MATRIX OF PROVIDING SOFTWARE LEARNING RESULTS BY RELEVANT COMPONENTS OF THE EDUCATIONAL PROGRAM

	ZO 1	ZO 2	ZO 3	ZO 4	ZO 5	9 OZ	PO 1	PO 2	Scientific
RN 01			+	+	+	+	+		+
RN 02		+						+	+
RN 03					+				
RN 04			+				+		+
RN 05	+		+	+			+		+
RN 06	+	+							
RN 07	+							+	
RN 08		_	+			+	_		+
RN 09			+		+	+			+